单词 |
Newton, Sir Isaac |
释义 |
Newton, Sir Isaac Sir Isaac NewtonNew·ton, Sir Isaac /ˈnjuːtn $ ˈnuː-/ (1642–1727) a British physicist and mathematician who is best known for discovering gravity (=the force that causes things to fall towards the ground or to be pulled towards stars or planets in space). He made many other important scientific discoveries, and is considered to be one of the most important scientists who ever lived. Until the early 20th century, modern physics was based on Newton's work, and it is sometimes called Newtonian physics. He is often shown in pictures holding an apple, because there is a story that he discovered the law of gravity when an apple fell on his head while he was sitting under a tree.New·ton, Sir IsaacSyllable |
随便看 |
- Music-topic hymn
- Music-topic impressionism
- Music-topic impressionism
- Music-topic impressionist
- Music-topic impressionist
- Music-topic improvise
- Music-topic improvise
- Music-topic incidental music
- Music-topic incidental music
- Music-topic instrument
- Music-topic instrument
- Music-topic instrumental
- Music-topic instrumental
- Music-topic instrumental
- Music-topic instrumental
- Music-topic instrumentalist
- Music-topic instrumentalist
- Music-topic instrumentation
- Music-topic instrumentation
- Music-topic interlude
- Music-topic interlude
- Music-topic interval
- Music-topic interval
- Music-topic jam
- Music-topic jam
- 《古人为诗,贵于意在言外,使人思而得之.》出自哪里,什么意思,注释,句意,翻译
- 《古人之学,其时习必悦,其朋来必乐,其理易知,其事易从.不贰于异说,不牵于私欲,造次于是,颠沛于是,则其久大可必.》什么意思,出自哪里,注释,句意,翻译
- 《古人之学,日新有得,必如前半截学识,后半截一贯;用功在学识,而取效在一贯.》什么意思,出自哪里,注释,句意,翻译
- 《古人之文,宏材逸气,体度风格,去今实远;但缉缀疏朴,未为密致耳.今世音律谐靡,章句偶对,讳避精详,贤于往昔多矣.宜以古之制裁为本,今之辞调为末,并须两存,不可偏弃也.》什么意思,出自哪里,注释,句意,翻译
- 《古人于一滴墨水中,吐吞天地山川之变.》出自哪里,什么意思,注释,句意,翻译
- 《古人云:“读书千遍,其义自见”.谓读得熟,则不待解说,自晓其义也.》出自哪里,什么意思,注释,句意,翻译
- 《古人云:积善三年,知之者少;为恶一日,闻于天下.善名之难得,恶名之易传,所以当懔(懔lin凛)于怀也.》什么意思,出自哪里,注释,句意,翻译
- 《古人云:“非关因果方为善,不为科名始读书”吾家世明经,苟不能上承家学,虽得科名不贵也》原文翻译|感想
- 《古人今人若流水,共看明月皆如此》什么意思,原诗出处,注解
- 《古人今人若流水,共看明月皆如此。》是什么意思|译文|出处
- 完全導体
- 完全帰納法
- 完全弾性
- 完全弾性体
- 完全微分形式
- 完全性
- 完全放射体
- 完全数
- 完全検査
- 完全楕円積分
|